Fourth Semester B.E. Degree Examination, June/July 2016 Signals and Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Sketch the even and odd part of the signals shown in Fig. Q1(a).

(06 Marks)

Fig.Q1(a)

b. For the signal x(t) and y(t) shown in Fig.Q1(b) sketch the signals:

i)
$$x(t+1) - y(t)$$

ii) $x(t) \cdot y(t-1)$.

(06 Marks)

Fig.Q1(b)

- c. Determine whether the system described by the following input/output relationship is i) memory less ii) causal iii) time invariant iv) linear.
 - i) y(t) = x(2-t)

ii)
$$y[n] = \sum_{k=0}^{\infty} 2^k x[n-k]$$
.

(08 Marks)

- 2 a. Compute the following convolutions:
 - i) $y(t) = e^{-2t} u(t-2) * \{u(t-2) u(t-12)\}$

ii) $y[n] = \alpha^n \{u[n] - u[n-6]\} * 2\{u[n] - u[n-15]\}.$

(14 Marks)

- b. Prove the following:
 - i) $x(t) * \delta(t t_0) = x(t t_0)$

ii) $x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$.

(06 Marks)

- 3 a. Identify whether the systems described by the following impulse responses are memory-less, causal and stable.
 - i) $h(t) = 3\delta(t-2) + 5\delta(t-5)$
 - ii) $h[n] = 2^n u[-n]$
 - iii) $h[n] = (\frac{1}{2})^n \delta[n]$. (09 Marks)
 - Find the natural response and the forced response of the system described by the following differential equation: $\frac{d^2y(t)}{dt^2} 4y(t) = \frac{d}{dt}x(t)$, if y(0) = 1 and $\frac{d}{dt}y(t)|_{t=0} = -1$. (08 Marks)
 - c. Write the difference equation for the system depicted in Fig. Q3(c). (03 Marks)

- 4 a. State and prove the Parseval's relation for the Fourier series representation of discrete time periodic signals. (06 Marks)
 - b. i) Find the DTFS of the signal $x(t) = \sin [5\pi n] + \cos [7\pi n]$
 - ii) Find the FS of the signal shown in Fig. Q4(b)(ii).

(08 Marks)

c. If the FS representation of periodic signal x(t) is $x(t) \xleftarrow{FS_1\omega_0} \frac{2\sin[K \omega_0 T_0]}{T K \omega_0}$ where

 $\omega_0 = \frac{2\pi}{T}$ then find the FS of y(t) without computing x(t) :

- i) y(t) = x(t+2)
- ii) $y(t) = \frac{d}{dt}x(t)$.

(06 Marks)

PART - B

- 5 a. i) Compute the DTFT of $x[n] = (\frac{1}{3})^n u[n+2] + (\frac{1}{2})^n u[n-2]$
 - ii) Find FT of the signal shown in Fig. Q5(a)(ii).

(10 Marks)

Fig. Q5(a)(ii)

- b. Find inverse FT of the following $x(j\omega)$:
 - i) $x(j\omega) = \frac{j\omega}{(j\omega)^2 + 6j\omega + 8}$
 - ii) $x(j\omega) = j \cdot \frac{d}{d\omega} \frac{e^{3j\omega}}{2 + j\omega}$. (10 Marks)

- 6 a. Determine output of the LTI system whose I/P and the impulse response is given as:
 - i) $x(t) = e^{-2t}u(t)$ and $h(t) e^{-3t}u(t)$
 - ii) $x[n] = (\frac{1}{3})^n u[n]$ and $h[n] = \delta[n-4]$.

(08 Marks)

- b. Find the Fourier transform of the signal $x(t) = \cos \omega_0 t$ where $\omega_0 = \frac{2\pi}{T}$ and T the period of the signal. (04 Marks)
- c. State the sampling theorem and briefly explain how to practically reconstruct the signal.

(08 Marks)

- 7 a. State and prove differentiation in z domain property of z transforms. (06 Marks)
 - b. Use property of z transforms to compute x(z) of:
 - i) $x[n] = n \sin (\pi n/2) u[-n]$
 - ii) $x[n] = (n-2) (\frac{1}{2})^n u [n-2].$

(06 Marks)

- c. Find the inverse z transforms of
 - i) $x(z) = \frac{z^2 2z}{\left(z^2 + \frac{3}{2}z 1\right)} \frac{1}{2} < |z| < 2$
 - ii) $x(z) = \frac{z^3}{\left(z \frac{1}{2}\right)} |z| > \frac{1}{2}$.

(08 Marks)

- 8 a. Determine the impulse response of the following transfer function if:
 - i) The system is causal
 - ii) The system is stable
 - iii) The system is stable and causal at the same time: $H(z) = \frac{3z^2 z}{(z-2)(z+\frac{1}{2})}$. (08 Marks)
 - b. Use unilateral z transform to determine the forced response and the natural response of the system described by: $y[n] \frac{1}{4}y[n-1] \frac{1}{8}y[n-2] = x[n] + x[n-1]$ where y[-1] = 1 and y[-2] = 1 with I/P $x[n] = 3^n u[n]$. (12 Marks)

* * * *